

Fremont Street Improvements Las Vegas Blvd to 14th Street


Client:

City of Las Vegas

STRUCTURAL DESIGN CALCULATIONS

ERA 1929 Light Pole Spread Footing

CA Group Project No. CA2158

TABLE OF CONTENTS

SUBJECT:	<u>PAGE NO</u> .
Seismic and Wind Criteria	1-4
Load Generation	5-8
Footing Design (no cover)	9-10
Footing Design (6" cover)	11
Footing Design (12" cover)	12
Reinforcement Design	13-14
Base Plate Design	15-16
Anchor Bolts	17-22

Search Information

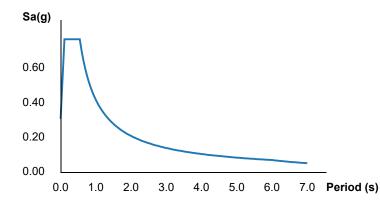
Address: Fremont St, Las Vegas, NV, USA

Coordinates: 36.16139229999999, -115.12242709999998

Elevation: ft

Timestamp: 2019-11-14T18:18:09.007Z

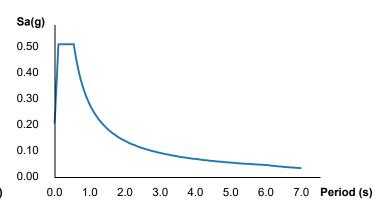
Hazard Type: Seismic


Reference ASCE7-16

Document:

Risk Category:

Site Class: D


MCER Horizontal Response Spectrum

Pahrump Las V.gas Lake Mead National Recreation South C Area Henderson Goodsprings Goodsprings Map data ©2Report amap erroc

Pg. #1

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	0.571	MCE _R ground motion (period=0.2s)
S ₁	0.187	MCE _R ground motion (period=1.0s)
S _{MS}	0.767	Site-modified spectral acceleration value
S _{M1}	0.417	Site-modified spectral acceleration value
S _{DS}	0.511	Numeric seismic design value at 0.2s SA
S _{D1}	0.278	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	D	Seismic design category
Fa	1.343	Site amplification factor at 0.2s
F _v	2.225	Site amplification factor at 1.0s

CR _S	0.897	Coefficient of risk (0.2s)
CR ₁	0.919	Coefficient of risk (1.0s)
PGA	0.251	MCE _G peak ground acceleration
F _{PGA}	1.349	Site amplification factor at PGA
PGA _M	0.339	Site modified peak ground acceleration
TL	6	Long-period transition period (s)
SsRT	0.571	Probabilistic risk-targeted ground motion (0.2s)
SsUH	0.637	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.755	Factored deterministic acceleration value (0.2s)
S1RT	0.187	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.204	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.692	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Search Information

Address: Fremont St, Las Vegas, NV, USA

Coordinates: 36.16139229999999, -115.12242709999998

Elevation: ft

Timestamp: 2019-11-14T15:53:27.873Z

Hazard Type: Wind

ASCE 7-16	ASCE 7-10	ASCE 7-05
MRI 10-Year 70 mph	MRI 10-Year 76 mph	ASCE 7-05 Wind Speed 90 mph
MRI 25-Year 75 mph	MRI 25-Year 84 mph	
MRI 50-Year 80 mph	MRI 50-Year 90 mph	
MRI 100-Year 85 mph	MRI 100-Year 96 mph	
Risk Category I 93 mph	Risk Category I 105 mph	
Risk Category II 99 mph	Risk Category II 115 mph	
Risk Category III 105 mph	Risk Category III-IV 120 mph	
Risk Category IV 110 mph		

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

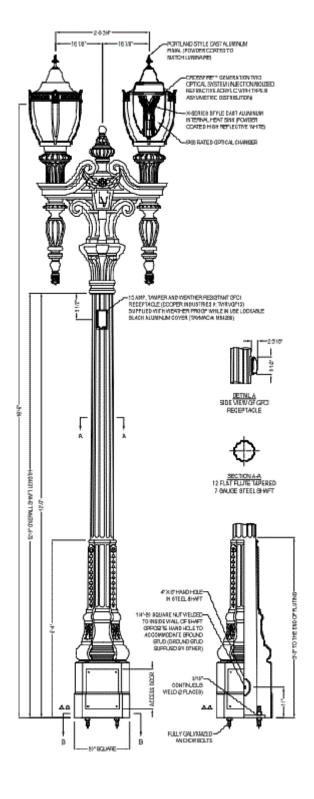
Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the https://hazards.atcouncil.org/#/wind?lat=36.16139229999999&lng=-115.12242709999998&address=Fremont St%2C Las Vegas%2C NV%2C USA

building site described by latitude/longitude location in the report.



Designed By: CAW Date: 11/15/2019 Page No. 1

ERA 1929 LIGHT POLE SPREAD FOOTING DESIGN:

Applicable Code - AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals.

ERA 1929 Light Pole Geometry:

Designed By: CAW Date: 11/15/2019 Page No. 2

Wind Load Criteria:

Risk Category II: Risk := 2 Height and Exposure Factor: $K_z := 1.0$

Exposure Category: Exp := C Gust Effect Factor: G: C Gust Effect Factor:

Basic Wind Speed: $V_{basic} := 99 mph$ Exposure Condition Factor: $z_g := 900 ft$

Wind Importance Factor: $I_r := 1.0$ Exposure Condition Factor: $\alpha := 9.5$

EPA INFORMATION								
SECTION	PROJECTED AREA (Sq. Ft.)	X CENTROID (Ft.)	Y CENTROID (Ft.)	Cd	EPA (Sq. Ft.)	APPROXIMATE WEIGHT (lbs.)		
BASE	6.30	0.00 Ft.	2.18 Ft.	1.10	6.93	450		
SHAFT	4.73	0.00 Ft.	8.91 Ft.	1.10	5.20	212		
CROSSARM	8.03	0.00 Ft.	15.13 Ft.	1.10	8.83	150		
RIGHT LUMINAIRE	3.43	1.41Ft	17.92 Ft.	0.50	1.72	55		
LEFT LUMINAIRE	3.43	-1.41 Ft.	17.92 Ft.	0.50	1.72	55		
Drag Coefficient According To Standard Specifications for Structural Supports (Table 3.6.6-1)					ALL WEIGHT	922		

Pole Base:

Centroid: $z_{base} := 2.18 ft$

Drag Coefficient: $C_{d_base} := 1.10$

Area: $A_{base} := 6.30 \text{ft}^2$

Factor: $K_{z_base} := 2.01 \cdot \left[\frac{(z_{base})}{z_g} \right]^{\left(\frac{2}{\alpha}\right)} = 0.57$

Wind Pressure: $P_{z_base} := 0.00256 \cdot K_{z_base} \cdot G \cdot \left(\frac{V_{basic}}{mph}\right)^{2} I_{r} \cdot C_{d_base} \cdot psf = 13.27 \cdot psf$

Wind Force: $F_{base} := P_{z_base} \cdot A_{base} = 83.6 \, lbf$

Pole Shaft:

Centroid: $z_{shaft} := 8.91 ft$

Area: $\Lambda = -4.73 \, \text{fr}$

Drag Coefficient: $C_{d \text{ shaft}} := 1.10$

Designed By: CAW Date: 11/15/2019 Page No. 3

Factor: $K_{z_shaft} := 2.01 \cdot \left[\frac{\left(z_{shaft}\right)}{z_g} \right]^{\left(\frac{2}{\alpha}\right)} = 0.76$

Wind Pressure: $P_{z_shaft} := 0.00256 \cdot K_{z_shaft} \cdot G \cdot \left(\frac{V_{basic}}{mph}\right)^{2} I_{r} \cdot C_{d_shaft} \cdot psf = 17.85 \cdot psf$

Wind Force: $F_{shaft} \coloneqq P_{z \ shaft} \cdot A_{shaft} = 84.4 \, lbf$

Pole Crossarm:

Centroid: $z_{arm} := 15.13 ft$

Area: $A_{arm} := 8.03 ft^2$

Drag Coefficient: $C_{d arm} := 1.10$

Factor: $K_{\underline{z}_arm} := 2.01 \cdot \left[\frac{\left(z_{arm} \right)}{z_g} \right]^{\left(\frac{2}{\alpha} \right)} = 0.85$

Wind Pressure: $P_{z_arm} := 0.00256 \cdot K_{z_arm} \cdot G \cdot \left(\frac{V_{basic}}{mph}\right)^{2} I_{r} \cdot C_{d_arm} \cdot psf = 19.95 \cdot psf$

Wind Force: $F_{arm} := P_{z \ arm} \cdot A_{arm} = 160.2 \, lbf$

Pole Luminaires:

Centroid: $z_{lum} := 17.92 ft$

Area: $A_{lum} := (2) \cdot 3.43 \, ft^2 = 6.9 \, ft^2$

Drag Coefficient: $C_{d lum} := 0.5$

Factor: $K_{z_lum} := 2.01 \cdot \left[\frac{\left(z_{lum} \right)}{z_g} \right]^{\left(\frac{2}{\alpha} \right)} = 0.88$

Wind Pressure: $P_{z_lum} := 0.00256 \cdot K_{z_lum} \cdot G \cdot \left(\frac{V_{basic}}{mph}\right)^2 I_r \cdot C_{d_lum} \cdot psf = 9.40 \cdot psf$

Wind Force: $F_{lum} := P_{z lum} \cdot A_{lum} = 64.5 lbf$

Total Overturning Moment:

 $M_{wind} \coloneqq F_{base} \cdot z_{base} + F_{shaft} \cdot z_{shaft} + F_{arm} \cdot z_{arm} + F_{lum} \cdot z_{lum} = 4.51 \cdot kip \cdot ft$

Designed By: CAW Date: 11/15/2019 Page No. 4

Seismic Load:

Peak Ground Acceleration: PGA := 0.251

Base Weight: $W_{base} := 4501bf$

Shaft Weight: $W_{shaft} := 212lbf$

Arm Weight: $W_{arm} := 1501bf$

Luminaire Weight: $W_{lum} := 2.55lbf = 110 lbf$

Total Overturning Moment:

$$M_{seismic} := PGA \cdot \left(W_{base} \cdot z_{base} + W_{shaft} \cdot z_{shaft} + W_{arm} \cdot z_{arm} + W_{lum} \cdot z_{lum}\right) = 1.78 \cdot kip \cdot ft$$

Spread Footing Design:

The overturning moment due to wind load governs the footing design: The following service and strength load groups will be considered:

Service: 1.0D + 1.0W Strength: 1.2D + 1.6W

Refer to the spreadsheets that follow for footing bearing pressures and reinforcement design:

Max Service Bearing Pressure = 700 psf < 2000 psf, therefore, O.K.

Min Service Bearing Pressure = 0 psf (no uplift), therefore, O.K.

Reinforcement Design Loads:

Assume the footing 'bends' about the light pole location at 2.125' and apply the pressure as a uniform load over the back 2.125', which is a conservative approach:

Service Shear: $V_{xy} := 400 \text{plf} \cdot 2.125 \text{ft} = 0.85 \cdot \text{kip}$

Service Moment: $M_W := V_W \cdot (2.125 \text{ ft}) \cdot 0.5 = 0.90 \cdot \text{kip} \cdot \text{ft}$

Factored Shear: $V_n := 630 \text{plf} \cdot 2.125 \text{ft} = 1.34 \cdot \text{kip}$

Factored Moment: $M_{ij} := V_{ij} \cdot (2.125 \, \text{ft}) \cdot 0.5 = 1.42 \cdot \text{kip} \cdot \text{ft}$

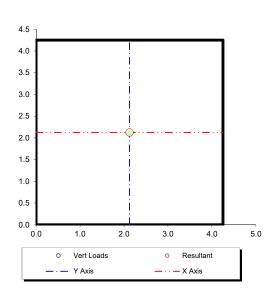
CLIENT:	City of Las Vegas	JOB NUMBER:	CA2158 PAGE NO.		
PROJECT:	remont Street Improvement Project	SUBJECT:	ERA Light Pole Spread Foot	ting (D + W)	
BY: cw	CHECKED BY: jm	APPROVED BY:		DATE: 11/15/2019	

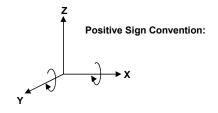
<u>MATERIAL PROPERTIES:</u> Concrete: $f'_c = \underline{4,000}$ psi $\alpha_c = \underline{150}$ pcf

Steel: $f_y = \underline{60,000}$ psi

Footing Width: 4.250 ft Pressure = 249.99 psf Surcharge Weight = 0.00 lbs

Footing Depth: <u>1.667</u> ft Weight = 4,515.44 lbs


Total Dead Load (Footing + Surcharge) = 4,515.44 lbs


FOOTING PLAN: $I_x = 27.19$ ft⁴

I_y = 27.19 ft⁴

FOOTING LOADS:

	/ertical L		Moment a	about N.A.	
Pos	ition	Magnitude	M _{xx}	M _{yy}	
"X"	"Y"	(kips)	(k-ft)	(k-ft)	
2.13	2.13	0.922	0.00	0.00	
	_				
тот	ALS:	0.92	0.00	0.00	

Footing Moments: M_{xx} : 0.00 k-ft

 M_{yy} : 4.51 k-ft

RESULTANT LOCATION: $e_x = 0.000$ ft

 $e_y = 0.000$ ft

TACTORED		0 1 11200	JUINEU.						
Corner No.	Coord	linates	Distance	from N.A.	P/A	M	/S	Pressure (G)	Pressure (N)
Corner No.	"X"	"Y"	N.A. _{xx}	N.A. _{yy}	(k/ft ²)	M _x /S _x	M _y /S _y	(ksf)	(ksf)
1	0.00	0.00	-2.13	-2.13	0.35	0.00	-0.35	0.00	-0.30
2	4.25	0.00	-2.13	2.13	0.35	0.00	0.35	0.70	0.40
3	4.25	4.25	2.13	2.13	0.35	0.00	0.35	0.70	0.40
4	0.00	4.25	2.13	-2.13	0.35	0.00	-0.35	0.00	-0.30

CLIENT: City of Las Vegas				JOB NUMBER:	CA2158	PAGE NO.
PROJECT: Fremont Street Improvement Project			SUBJECT:	ERA Light Pole Spread Footing	g (1.2D + 1.6W)	
BY:	cw	CHECKED BY:	jm	APPROVED BY:		DATE: 11/15/2019

MATERIAL PROPERTIES: Concrete: $f_c = \underline{4,000}$ psi $\alpha_c = \underline{150}$ pcf

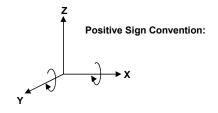
Steel: $f_y = \underline{60,000}$ psi

FOOTING DATA: Footing Length: $\underline{4.250}$ ft Volume = 30.10 cf Footing Surcharge: $\underline{0}$ psf

Footing Width: 4.250 ft Pressure = 249.99 psf Surcharge Weight = 0.00 lbs

Footing Depth: <u>1.667</u> ft Weight = 4,515.44 lbs

Total Dead Load (Footing + Surcharge) = 4,515.44 lbs


FOOTING PLAN: $I_x = 27.19$ ft⁴

I_y = 27.19 ft⁴

FOOTING LOADS:

\	ertical L	oads	Moment a	bout N.A.
Position		Magnitude (kips)	M _{xx} (k-ft)	M _{yy} (k-ft)
"X"	Y	(кірэ)	(K-IL)	(K-IL)
2.13	2.13	1.106	0.00	0.00
TOT	ALS:	1.11	0.00	0.00

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1.0 3.0 4.0 5.0 0.0 O Vert Loads Resultant - · - Y Axis — · · — X Axis

Footing Moments: M_{xx} : 0.00 k-ft

 M_{yy} : 7.22 k-ft

RESULTANT LOCATION: $e_x = 0.000$ ft

 $e_y = 0.000$ ft

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	122 : 00101 : 120001.120								
Corner No.	Coordinates		Coordinates Distance from N.A.		P/A M/S		/S	Pressure (G)	Pressure (N)
Corner No.	"X"	"Y"	N.A. _{xx}	N.A. _{yy}	(k/ft ²)	M _x /S _x	M _y /S _y	(ksf)	(ksf)
1	0.00	0.00	-2.13	-2.13	0.36	0.00	-0.56	-0.20	-0.50
2	4.25	0.00	-2.13	2.13	0.36	0.00	0.56	0.93	0.63
3	4.25	4.25	2.13	2.13	0.36	0.00	0.56	0.93	0.63
4	0.00	4.25	2.13	-2.13	0.36	0.00	-0.56	-0.20	-0.50

CITY of Las Vegas			JOB NUMBER:	CA2158	PAGE NO.
PR	OJECT: F	remont Street Improvement Project	SUBJECT:	ERA Light Pole Spread Footi	ng (6" Cover)
BY	: cw	CHECKED BY: jm	APPROVED BY:		DATE: 11/14/2019

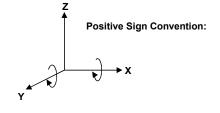
MATERIAL PROPERTIES: Concrete: $f'_c = 4,000$ psi $\alpha_c = 150$ pcf

Steel: $f_y = \underline{60,000}$ psi

Footing Width: 4.250 ft Pressure = 187.50 psf Surcharge Weight = 1,128.91 lbs

Footing Depth: $\underline{1.250}$ ft Weight = 3,386.72 lbs

Total Dead Load (Footing + Surcharge) = 4,515.63 lbs


FOOTING PLAN: $I_x = 27.19$ ft⁴

I_y = 27.19 ft⁴

FOOTING LOADS:

tion "Y"	Magnitude	M _{xx}	м
	(kips)	(k-ft)	M _{yy} (k-ft)
2.13	0.922	0.00	0.00
	ALS:		

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1.0 3.0 4.0 5.0 0.0 O Vert Loads Resultant - · - Y Axis — · · — X Axis

Footing Moments: M_{xx} : 0.00 k-ft

 M_{yy} : 4.51 k-ft

RESULTANT LOCATION: $e_x = 0.000$ ft

 $e_y = 0.000$ ft

Corner No.	Coord	inates	Distance	from N.A.	P/A	M/S		Pressure (G)	Pressure (N)
Corner No.	"X"	"Y"	N.A. _{xx}	N.A. _{yy}	(k/ft²)	M _x /S _x	M _y /S _y	(ksf)	(ksf)
1	0.00	0.00	-2.13	-2.13	0.35	0.00	-0.35	0.00	-0.30
2	4.25	0.00	-2.13	2.13	0.35	0.00	0.35	0.70	0.40
3	4.25	4.25	2.13	2.13	0.35	0.00	0.35	0.70	0.40
4	0.00	4.25	2.13	-2.13	0.35	0.00	-0.35	0.00	-0.30

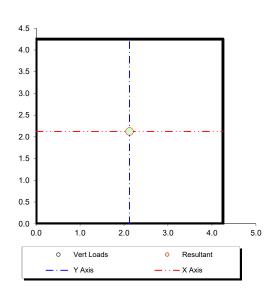
CITENT: City of Las Vegas			JOB NUMBER:	CA2158	PAGE NO.
	PROJECT:	remont Street Improvement Project	SUBJECT:	ERA Light Pole Spread Footin	g (12" Cover)
	BY: CW	CHECKED BY: jm	APPROVED BY:		DATE: 11/14/2019

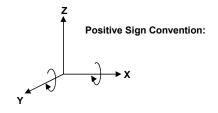
MATERIAL PROPERTIES: Concrete: $f'_c = 4,000$ psi $\alpha_c = 150$ pcf

Steel: $f_y = \underline{60,000}$ psi

Footing Width: 4.250 ft Pressure = 150.00 psf Surcharge Weight = 2,257.81 lbs

Footing Depth: 1.000 ft Weight = 2,709.38 lbs


Total Dead Load (Footing + Surcharge) = 4,967.19 lbs


FOOTING PLAN: $I_x = 27.19$ ft⁴

I_v = 27.19 ft⁴

FOOTING LOADS:

	/ertical L		Moment a	bout N.A.
Pos	ition	Magnitude	M _{xx}	M _{yy}
"X"	"Y"	(kips)	(k-ft)	(k-ft)
2.13	2.13	0.922	0.00	0.00
	_			
тот	ALS:	0.92	0.00	0.00

Footing Moments: M_{xx} : 0.00 k-ft

 M_{yy} : 4.51 k-ft

RESULTANT LOCATION: $e_x = 0.000$ ft

e_y = 0.000 ft

Corner No.	Coord	linates	Distance	from N.A.	om N.A. P/A		M/S		Pressure (N)
Corner No.	"X"	"Y"	N.A. _{xx}	N.A. _{yy}	(k/ft²)	M _x /S _x	M _y /S _y	(ksf)	(ksf)
1	0.00	0.00	-2.13	-2.13	0.38	0.00	-0.35	0.03	-0.30
2	4.25	0.00	-2.13	2.13	0.38	0.00	0.35	0.73	0.40
3	4.25	4.25	2.13	2.13	0.38	0.00	0.35	0.73	0.40
4	0.00	4.25	2.13	-2.13	0.38	0.00	-0.35	0.03	-0.30

CLIENT:	City of Las Vegas	JOB NUMBER:	CA2158	PAGE NO.	
PROJECT: Fremont Street Improvement Project		SUBJECT:	ERA Light Pole Spread	Footing	
BY: CW	CHECKED BY: jm	APPROVED BY:		DATE:	11/14/2019

CONCRETE SECTION DESIGN:

DESIGN REQUIREMENTS:

Factored moment:	M _u =	1.42	ft-kip
Service moment:	M _w =	0.90	ft-kip
Factored shear:	V _u =	1.34	kip
Service shear:	V _w =	0.85	kip

RESISTANCE FACTORS: (5.5.4.2)

Flexure:	$\phi_f =$	0.9
Shear:	φ _v =	0.9

Maximum Aggregate Size: 1.50 in

MATERIAL PROPERTIES:

Concrete compressive strength:	f'c =	4000	psi
Concrete unit weight:	W _c =	150	pcf
Concrete modulus of elasticity: (5.4.2.4)	E _c =	3834	ksi
		480.00	psi
Concrete modulus of rupture: (5.4.2.6)	f _{r2} =	740.00	psi
	f _{r3} =	400.00	psi
Steel yield strength:	f _y =	60000	psi
Steel modulus of elasticity:	E _s =	29000	ksi
Modulus ratio:	n =	7.56	ksi
Factor:	β ₁ =	0.85	ksi

Equations:

$$\begin{split} \mathbf{E}_{\mathbf{c}} &:= \left(\mathbf{W}_{\mathbf{c}}\right)^{1.5} \cdot 33 \cdot \sqrt{\mathbf{f}_{\mathbf{c}}} \\ \mathbf{f}_{\mathbf{r}1} &:= 0.24 \cdot \sqrt{\mathbf{f}_{\mathbf{c}}} \\ \mathbf{f}_{\mathbf{r}2} &:= 0.37 \cdot \sqrt{\mathbf{f}_{\mathbf{c}}} \\ \mathbf{f}_{\mathbf{r}3} &:= 0.20 \cdot \sqrt{\mathbf{f}_{\mathbf{c}}} \\ \mathbf{n} &:= \frac{\mathbf{E}_{\mathbf{s}}}{\mathbf{E}_{\mathbf{c}}} \end{split}$$

$$\beta_1 := if \left[\mathbf{f_c} < 4000psi, 0.85, 0.85 - \left(\frac{\mathbf{f_c}}{1000psi} - 4.0 \right) \cdot 0.05 \right]$$

Graphic:

SECTION PROPERTIES:

Section type:	Туре	Slab	
Height:	h =	12	in
Width:	b =	12	in
Moment of inertia:	I _g =	1728	in ⁴
Section modulus:	S _c =	288	in ³
	M _{cr1} =	11.52	ft-kip
Cracking moment:	M _{cr2} =	17.76	ft-kip
	M _{cr3} =	9.60	ft-kip

Equations:

$$I_{g} := \left(\frac{\mathbf{b} \cdot \mathbf{h}^{3}}{12}\right)$$

$$S_{c} := \frac{I_{g}}{0.5 \cdot \mathbf{h}}$$

$$M_{cr1} := S_{c} \cdot f_{r1}$$

$$M_{cr2} := S_c \cdot f_{r2}$$

$$M_{cr3} := S_c \cdot f_{r3}$$

•

FLEXURAL REINFORCEMENT DATA:

Clear cover (in):	Bottom:	Sides:	Between Rows:
Clear cover (III).	3.00	2.00	3.00

Layer	No. of Bars	Bar Size	Bar Diam. (in)	A _s /bar (in²)	A _s /layer (in²)	d (in)	Clr. Spa. (in)
1	1	5	0.625	0.307	0.307	8.688	12.000
					0.000	0.000	
					0.000	0.000	
Totals:	1		>		0.307	8.688	> <

SHEAR REINFORCEMENT DATA:

Bar Size	Bar Diam.	No. of	Spacing	A _v
	(in)	Legs	(in)	(in²)
3	0.000	0	6	0.000

Spacing Requirements: (5.8.2.7)

Concrete shear stress: v_u = 0.014 ksi < 0.125 * f ' $_c$ Maximum spacing: s = 7.0 in

	CLIENT:	City of Las Vegas	JOB NUMBER:	CA2158	PAGE NO.
1	PROJECT:	Fremont Street Improvement Project	SUBJECT:	ERA Light Pole Spread Footing	
Ī	BY: CW	CHECKED BY: jm	APPROVED BY:		DATE: 11/14/2019

DESIGN CALCULATIONS:

Depth of compression section: (5.7.3.1.2-4)	c =	0.531	in
Depth of equivalent stress block: (5.7.2.2)	a =	0.451	in
Nominal flexural resistance: (5.7.3.2.2-1)	M _n =	12.98	ft-kip
Strain in reinforcing at ultimate: (5.7.2.1)	$\varepsilon_{\rm s}$ =	0.0461	
For grade 60 reinforcement:	ε _y =	0.0021	
Ratio:	c/d _s =	0.061	
Factored resistance: (5.7.3.2.1)	M _r =	11.68	ft-kip
Minimum reinforcement: (5.7.3.3.2)	1.33M _u =	1.89	ft-kip
William Telliorcement. (5.7.3.3.2)	1.2M _{cr} =	11.52	ft-kip

CHECK SERVICEABILITY: (5.7.3.4)

Exposure factor:	γ _e =	1.00	
Concrete cover thickness:	d _c =	3.313	in
Factor:	β _s =	1.545	in
Tension reinforcement ratio:	ρ =	0.0029	in
Constant:	k =	0.190	
Constant:	j =	0.937	
Tensile stress at service limit state:	f _{ss} =	4.33	ksi
Maximum permitted bar spacing:	s _{max} =	98.13	in

SKIN REINFORCEMENT:

Is skin reinforcement required?:	Req'd:	No	
Skin reinf req'd (in ² / ft of height, each face):	A _{sk} =	-0.256	in ²
Maximum spacing:	S _{skin} =	1.45	in

SHEAR DESIGN: (5.8.3.3)

Minimum shear steel req'd: (5.8.2.5)	A _v =	0.000	in ²
Effective shear depth:	d _v =	8.64	in
Strain:	$\varepsilon_{\rm s}$ =	0.00037	
Crack spacing parameter:	s _{xe} =	5.60	
Beta:	β =	4.291	
Theta:	θ =	30.303	deg
Shear strength of the concrete:	V _c =	28.27	kip
Shear strength of the reinforcement:	V _s =	0.00	kip
Factored shear resistance:	φV _n =	25.44	kip

DESIGN CHECKS:

(1)	Flexural Capacity:	OK!
(2)	Ductile Failure:	OK!
(3)	Minimum Flexural Steel:	OK!
(4)	Flexural Steel Spacing:	OK!
(5)	Shear Capacity:	OK!
(6)	Minimum Shear Steel:	Not Required
(7)	Stirrup Spacing:	Not Required

Equations:

$$\begin{split} c &:= \frac{\left[\left(A_{sr1} + A_{sr2} + A_{sr3} \right) \cdot f_{y} \right]}{0.85 \cdot f_{c} \cdot \beta_{1} \cdot b} \\ a &:= c \cdot \beta_{1} \\ M_{n} &:= \left(A_{sr1} + A_{sr2} + A_{sr3} \right) \cdot f_{y} \cdot \left(d - \frac{a}{2} \right) \\ \varepsilon_{s} &:= 0.003 \cdot \frac{(d-c)}{c} \\ \varepsilon_{y} &:= \frac{f_{y}}{E_{s}} \\ M_{r} &:= \varphi_{f} \cdot M_{n} \\ d_{c} &:= h - d \\ \beta_{s} &:= 1 + \frac{d_{c}}{0.7 \cdot (h - d_{c})} \\ \rho &:= \frac{\left(A_{sr1} + A_{sr2} + A_{sr3} \right)}{b \cdot d} \\ k &:= \sqrt{(2 \cdot \rho \cdot n) + (\rho \cdot n)^{2}} - \rho \cdot n \\ j &:= 1 - \frac{k}{3} \\ f_{ss} &:= \frac{M_{w}}{\left(A_{sr1} + A_{sr2} + A_{sr3} \right) \cdot j \cdot d} \\ s_{max} &:= \left[\frac{\left(700 \cdot \gamma_{e} \right)}{\beta_{s} \cdot f_{ss}} \right] - 2 \cdot d_{c} \\ A_{sk} &:= \min \left(0.012 \cdot (d - 30), \frac{\left(A_{sr1} + A_{sr2} + A_{sr3} \right)}{4} \right) \\ S_{skin} &:= \min \left(12.0, \frac{d}{6} \right) \\ A_{v} &\geq 0.0316 \cdot \sqrt[4]{f_{c}} \cdot \frac{(b \cdot Spacing)}{f_{y}} \\ d_{v} &:= \max \left(0.9 \cdot d, 0.72 \cdot h, \frac{M_{n}}{A_{s} \cdot f_{y}} \right) \\ \varepsilon_{s} &:= \left[\frac{\left(\frac{M_{u}}{d} \right) + V_{u}}{E_{s} \cdot A_{s}} \right] \\ \beta &:= \frac{4.8}{(1 + 750 \cdot \varepsilon_{s})} \quad OR \quad \beta &:= \left[\frac{4.8}{(1 + 750 \cdot \varepsilon_{s})} \right] \cdot \left[\frac{51}{(39 + s_{xe})} \right] \\ s_{xe} &:= s_{x} \cdot \left(\frac{1.38}{a_{g} + 0.63} \right) \\ \theta &:= 29 + 3500 \cdot \varepsilon_{s} \\ V_{c} &:= 0.0316 \cdot \beta \cdot \sqrt[4]{f_{c} \cdot b \cdot d} \\ V_{s} &:= \frac{\left(A_{v} \cdot f_{y} \cdot d \cdot \cot(\theta) \right)}{Spacing} \\ \end{split}$$

Job Title: Fremont St - LV Blvd to 14th St

Subject: RFI #011 Title: 1929 ERA Street Light Subtitle: Base Plate Design Designed By: Chris Wunsch Date: 11/14/2019 Job No. CA2158

DESIGN CODES:

- 1. ACI 318-14 Building Code Requirements for Structural Concrete
- 2. AISC Manual of Steel Construction ASD

DESIGN LOADS:

Anchor Reactions:

Service Axial Load: $P_W := 0.922 \text{kip}$

Service Moment: $M_w := 4.51 \text{kip} \cdot \text{ft}$

Service Shear Load: $V_W := 0.393 kip$

Base Plate Dimensions:

Dimension b1: $b_1 := 2.1875$ in

Dimension b2: $b_2 := 5.3125$ in

Dimension B: $B := 2 \cdot b_1 + 2 \cdot b_2 = 15.00 \cdot in$

Dimension n1: $n_1 := 2.1875in$

Dimension n2: $n_2 := 5.3125$ in

Dimension N: $N := 2 \cdot n_1 + 2 \cdot n_2 = 15.00 \cdot in$

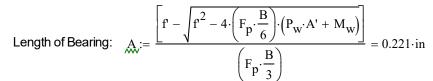
Design Calculations:

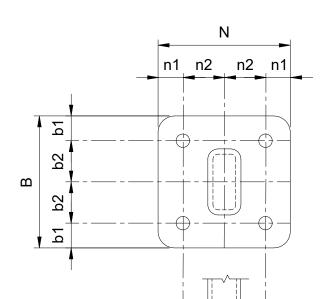
Column Depth: $d_{col} := 9.0$ in

Concrete Compressive Strength: $f_c := 4000 psi$

Steel Yield Strength: $f_v = 36.0 \text{ksi}$

Distance, $N' := N - n_1 = 12.813 \cdot in$


Distance, $A' := 0.5 \cdot N - n_1 = 5.313 \cdot in$


Axial Load, $P_w = 0.9 \cdot kip$

 $\label{eq:maximum} \text{Maximum Design Bearing Stress}, \qquad F_{p} := 0.35 \cdot f_{c} \cdot 2 = 2.800 \cdot ksi$

Eccentricity, $e := \frac{M_W}{P_W} = 58.70 \cdot in$

$$f' := \frac{\left(F_p \cdot B \cdot N'\right)}{2} = 269.1 \cdot kip$$

Job Title: Fremont St - LV Blvd to 14th St

Subject: RFI #011 Title: 1929 ERA Street Light Subtitle: Base Plate Design

Designed By: Chris Wunsch Date: 11/14/2019

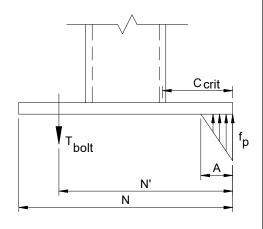
Job No. CA2158

Single Bolt Tension,

$$T_{bolt} := \left\lceil \frac{\left(F_p \cdot A \cdot B\right)}{2} \right\rceil - \frac{P_w}{2} = 4.17 \cdot kip$$

Critical Section:

$$c_{crit} := 0.5 \cdot N - 0.5 \cdot d_{col} = 3 \cdot in$$


Moment in the Plate due to Bearing Stress:

$$M_{plate1} := 0.5 \cdot F_p \cdot A \cdot \left(c_{crit} - A \cdot \frac{1}{3}\right) = 0.90 \cdot kip$$

Moment in the Plate due to Bolt Tension:

$$M_{plate2} := \frac{T_{bolt}}{2} = 2.09 \cdot kip$$

Company:		Date:	9/23/2019
Engineer:	caw	Page:	1/6
Project:	Fremont St Improvements		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment: Anchor Bolt Check

2. Input Data & Anchor Parameters

General

Design method:ACI 318-14 Units: Imperial units

Anchor Information:

Anchor type: Cast-in-place Material: F1554 Grade 36 Diameter (inch): 1.000

Effective Embedment depth, hef (inch): 8.000

Anchor category: -Anchor ductility: Yes h_{min} (inch): 9.75 C_{min} (inch): 6.00 S_{min} (inch): 6.00

Recommended Anchor

Anchor Name: J- or L-Bolt - 1"Ø J- or L-Bolt, F1554 Gr. 36

Project description: ERA 1929 Light Pole Spread Footing

Location:

Fastening description:

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 12.00

State: Cracked

Compressive strength, f'c (psi): 4000

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No

Ignore 6do requirement: No Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 15.00 x 15.00 x 1.00

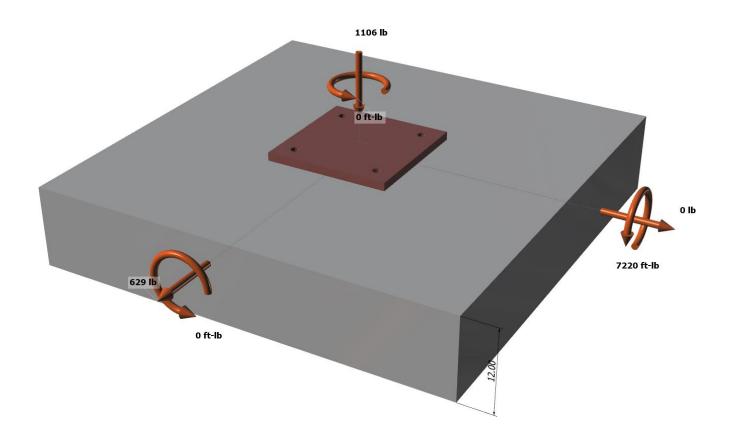
Company:		Date:	9/23/2019
Engineer:	caw	Page:	2/6
Project:	Fremont St Improvements		
Address:			
Phone:			
E-mail:			

Load and Geometry

Load factor source: ACI 318 Section 5.3

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: Not applicable


Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: No

Strength level loads:

 $\begin{array}{l} N_{ua} \; [lb]: \; \text{-}1106 \\ V_{uax} \; [lb]: \; 629 \\ V_{uay} \; [lb]: \; 0 \\ M_{ux} \; [\text{ft-lb}]: \; 0 \\ M_{uy} \; [\text{ft-lb}]: \; 7220 \\ M_{uz} \; [\text{ft-lb}]: \; 0 \\ \end{array}$


<Figure 1>

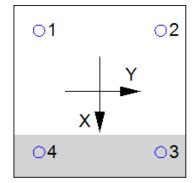
Company:		Date:	9/23/2019
Engineer:	caw	Page:	3/6
Project:	Fremont St Improvements		
Address:			
Phone:			
E-mail:			

<Figure 2>

Company:		Date:	9/23/2019
Engineer:	caw	Page:	4/6
Project:	Fremont St Improvements		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	3443.1	157.3	0.0	157.3	
2	3443.1	157.3	0.0	157.3	
3	0.0	157.3	0.0	157.3	
4	0.0	157.3	0.0	157.3	
Sum	6886.2	629.0	0.0	629.0	


Maximum concrete compression strain (%): 0.07 Maximum concrete compression stress (psi): 288

Resultant tension force (lb): 6886

Resultant compression force (lb): 7992

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

Nsa (lb)	ϕ	ϕN_{sa} (lb)	
35150	0.75	26363	

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

 $N_b = k_c \lambda_a \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. 17.4.2.2a)

Kc	λ_{a}	f'c (psi)	hef (in)	Νь (lb)				
24.0	1.00	4000	8.000	343	46				
$\phi N_{cbg} = \phi (A$	Nc / ANco) Yec, N	$\Psi_{ed,N}\Psi_{c,N}\Psi_{cp,N}N_{cp,N}$	(Sec. 17.3.1 & E	Eq. 17.4.2.	.1b)				
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
830.88	576.00	20.18	1.000	1.000	1.00	1.000	34346	0.70	34681

6. Pullout Strength of Anchor in Tension (Sec. 17.4.3)

 $fN_{pn} = fY_{c,P}N_p = fY_{c,P}0.9f'_ce_hd_a$ (Sec. 17.3.1, Eq. 17.4.3.1 & 17.4.3.5)

$arPsi_{ extsf{c}, extsf{P}}$	f'c (psi)	d _a (in)	$e_h=3d_a$ (in)	ϕ	ϕN_{pn} (lb)
1.0	4000	1.00	3.00	0.70	7560

Company:		Date:	9/23/2019
Engineer:	caw	Page:	5/6
Project:	Fremont St Improvements		
Address:			
Phone:			
E-mail:		•	

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

V_{sa} (lb)	ϕ grout	ϕ	$\phi_{ extit{grout}}\phi V_{ extit{sa}}$ (lb)	
21090	1.0	0.65	13709	

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = \min |7(I_e/d_a)^{0.2} \sqrt{d_a \lambda_a} \sqrt{f'_c c_{a1}}^{1.5}; \ 9\lambda_a \sqrt{f'_c c_{a1}}^{1.5}| \ (\text{Eq. 17.5.2.2a \& Eq. 17.5.2.2b})$

<i>l</i> e (in)	d_a (in)	λ_a	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
8.00	1.000	1.00	4000	13.45	28088			
$\phi V_{cbgx} = \phi (A$	$A_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. 17.3.1 & E	q. 17.5.2.1b)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
611.76	814.46	1.000	1.000	1.000	1.297	28088	0.70	19151

Shear parallel to edge in x-direction:

 $V_{by} = \min[7(I_e/d_a)^{0.2}\sqrt{d_a\lambda_a}\sqrt{f_c}c_{a1}^{1.5}; 9\lambda_a\sqrt{f_c}c_{a1}^{1.5}]$ (Eq. 17.5.2.2a & Eq. 17.5.2.2b)

l _e (in)	da (in)	λ_a	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)			
8.00	1.000	1.00	4000	13.45	28088			
$\phi V_{cbgx} = \phi (2$	$P(A_{Vc}/A_{Vco})\Psi_{ec}$	$_{ m V}arPhi_{ m ed,V}arPhi_{ m c,V}arPhi_{ m h,V}$	V _{by} (Sec. 17.3.1,	17.5.2.1(c) & E	q. 17.5.2.1b)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\mathscr{\Psi}_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
611.76	814.46	1 000	1 000	1 000	1 207	28088	0.70	38303

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

 $\phi V_{cpg} = \phi k_{cp} N_{cbg} = \phi k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ec,N} \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,N} N_b \text{ (Sec. 17.3.1 \& Eq. 17.5.3.1b)}$

K_{CP}	A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕV_{cpg} (lb)
2.0	1198.54	576.00	1.000	1.000	1.000	1.000	34346	0.70	100054

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6.)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	3443	26363	0.13	Pass
Concrete breakout	6886	34681	0.20	Pass
Pullout	3443	7560	0.46	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	157	13709	0.01	Pass
T Concrete breakout x+	629	19151	0.03	Pass (Governs)
Concrete breakout y-	315	38302	0.01	Pass (Governs)
Pryout	629	100054	0.01	Pass
Interaction check Nual	/φNn Vua/φVn	Combined Rati	o Permissible	Status
Sec. 17.61 0.46	0.00	45.5%	1.0	Pass

1"Ø J- or L-Bolt, F1554 Gr. 36 with hef = 8.000 inch meets the selected design criteria.

Company:		Date:	9/23/2019
Engineer:	caw	Page:	6/6
Project:	Fremont St Improvements		
Address:			
Phone:			
E-mail:			

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.